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An analytic solution of the problem describing the oscillations of a string when a load mcwes on it with 

an arbitrary specified law of motion is obtained. Using the equation obtained, an analytic relationship is 

derived for the horizontal component of the total reaction force of the string acting at the point of 

application of the load. 

WE~ILL assume that a load P (a vertical constant force) moves along a string which lies on a viscous 
Winkbr foundation. The small vertical oscillations of the string are described by the equation 

u, - c%= -I- 2614, + h2u(x,t) = 0 (1) 

where c = J(Tlp) is the velocity of ~roF~gatio~ of the transverse waves in the string, T is the tension, p is 

the density per unit length, and the quantities 6 and A represent its viscous and elastic properties, 
respectively. The motion of the load is given by the following relation 

x = r(t) E C,[O,+=J), I(0) = 0, i(0) = U, 3 0, 7(O) > 0 

We will a*iurne that the function r(t) is a rno~oton~~~~ increasing function I(+) = +oo and i(t) f c. 
The solution ac(x, r) will be sought separately for x20, i.e. u(x, r) = u*(x, t), x233, where the functions 

u*(x, t) are connected by the relations 

u+(O,t)= u-(OJ), u:(O,t> = adgOlf), t > 0 

(by the value of the function we mean the corres~nding single-sided &nit). As we know [IIt the solution 
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FIG. 1. 

Then the horizontal component of the total reaction R of the string at the point x = 1(t) (see Fig. 1) is 

given by the equation [l] 

Rx=- PC= X( - i2(r)Xlr,2(X.t)p,_r(,) (3) 

We will choose the initial conditions in the form 

u*(x,O)=p*(x)=(2y T)-‘Poeip(y=h/c) 

utf(x*O)=O, x l 0 (4) 

Note than when P, = P the load “takes off” from a position corresponding to the profile of the string for a 

stationary load P; if P0 =0 we obtain an undisturbed string (zero initial conditions). We will seek a 
solution of the problem bounded at infinity ((x r) + -). 

We will apply a Laplace transformation separately for xS0 to Eq. (l), where 

U’(x,p) = t(u+(x,t)} = 
4 (4 
j r+esP’dr + ‘i u,e-"df (5) 
0 r,(x) 

and f,(x) is the inverse function to I(r). Then, taking conditions (2) into account we have 

L&J = p2Uu+(x,r)] - PU+(x,o) + e-~~(*)[II1(X,t)lltr~(I) 

or, by virtue of the relation [u,] I+,)= -i(t)[u,] Ir_,,CIj (obtained by differentiating the first relation in (2)) we 

find 

UIl + h p2u+(x,p)-pcp+(x)+ 
Pi(t) 

P(C 
2 . 

- 12W) e 
-A (*) * l = l, (x) 

The relation between UL and Le=} is calculated by differentiating (5). 
We finally obtain an operator representation of problem (l), (2) and (4) 

u& -A3f(x,p)= -PT-‘i~(x)e-~q(x)_ 

-C-2~*(X)(p+26);a=c-1(p2+26p+h2)1'2 (6) 

where rl(x) is the unit function, and I> 0 when p > 0 [2]. 
Two of the four arbitrary constants from the solutions of Eqs (6) will be assumed to be zero, taking 

into account the steady-state initial conditions (4) (i.e. there are no “backward” waves) and the condition 
at infinity. The two remaining constants are found from the “matching” conditions at the point x = 0 
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~‘(O,P) = U-(O,pl U~(0.p) = U;(O,p) (Rep > 0) 

As a result we uniquely find the image of the required solution 

u-(x,P)= 
PoeX" Pe" --+-F(O,p)++-(x) 
2Tp5 27% 

u+(x,P) = 

Poeek 1 
-s+p(p+(x), F(~.p)=‘j”il(S)e-~~(~‘-Yd5, Rep>0 

x 

A numerical calculation, and especially an analysis of the solution U*(x, p) obtained, and particularly 
its partial derivatives when calculating the inversion formula u* = L-‘{U*} directly from (7), is fairly 
difficult (particularly from the point of view of obtaining the required accuracy) in view of the oscillations 
of the integrals. Hence, to achieve the inversion an investigation is made of the asymptotic behaviour of 

the integrals (7). In view of the complexity of the expressions obtained and the multitude of cases 

depending on the ratio between h and 6, we will confine ourselves here to the case when 6 = 0. 
Consider the function F(x, p), regular in the half-plane Rep > 0 when h = c-l d(p’ + h*), x > 0. The 

investigation of its asymptotic behaviour when p + 00, Repr Q > 0 can be reduced, in principle, to a 
consideration of the standard Laplace integral [3], where the point of maximum contribution 5 = x if the 
quantity A is expanded in a Laurent series in the neighbourhood of the point p = 0, and appropriate 

estimates are made. However, in this case this is more simply achieved by integrating the expression for 

F(x,p) by parts and estimating the complex expressions obtained taking into account the smoothness of 
l(t) in the general scheme for constructing an asymptotic series. 

As a result we obtain that 

F(x,p)=C-p’i(x)-~ ( il(;;T;_l ;+o+ 
P 1 

p+-* Repaa>O, x>O 

From these estimates and a similar estimate for the second term it follows, in particular, that U+(x, p) is 

the image (since the sufficient conditions [2] are satisfied), i.e. taking into account the inversion formula 

the quantity u(x, t) obtained is a solution of the problem. We then apply the inversion formula to the term 

in question, in which part of the integral F(x, p) (namely, the integral in the limits from x, * to -), where 
x, * is the first positive root of the equation 

def 
c-lx+f =F,(x;) E z1(x;)+c-‘x; 

makes a zero contribution to the quantity u*(x, t) on the basis of Jordan’s lemma. Inversion of the 

remaining part of F(x,p) can be carried out using the well-known operational formulae [4], if we change 
the order of integration in the inversion formula. The remaining terms from (7) are inverted using exactly 

the same scheme, except, for example, that in the next term one must take into account the fact that for a 
velocity i(t) smaller or greater than the critical value, i.e. c, the point of maximum contribution will be the 
beginning or end of the integration section, respectively. Finally, when i(t) < c we have 

u+(x,t) = A(x,f,x;,x)~(t - II(x))+ A(x,t,n;,O)q(t -c-lx)+ 

+cp’(x) + A,(x,t,C’x)q(t - c-*x) 

u-(~,~)=A(x,~,x;,O)~(r+c-~x)+cp-(x)+~(x,t,-c-~x)~(t+c-~x) 
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(8) 

(J,,(x) is a Bessel function of zero order). 
If i(t) > c, then in the second term in the formula for u+(x, t) the integration must be carried out in the 

limits from x2 * to x, while rl(t-c-lx) is replaced by rl(t- I,(x)). 

In Eqs (S), if t c II(x), i.e. the load “does not reach” the point x, then x2 * is the first positive root of the 
equation t - c-‘x = Z,(x,*)- cdx2*, if t b II(x), then x2* = x. If the load moves with a velocity greater than 
the critical velocity, then when l,(x 6 t G c-lx) the quantity x2 * is found from the previous equation, and 
x2* = 0 when t 2 c-lx. The quantity xg * is the first positive root of the equation 

t+c-lx=fl(x;)+c-lx;, xc0 

Representation (8) enables us to understand the structure of the solution u(x, t). The term A1 = A(x, t, 
x1*, x)q(t-l,(x)) from (8) is a wave radiated backward by the load, and hence the contribution to the 
quantity A, at the first point x and at a given instant of time t introduces points of the section 5 E [x, x1*] 
(the section of integration), already excited by the load P, the excitation from which is able to arrive at the 

given point x. The term 4 =A(x, t, x2 , * O)q(t-c”x) corresponds to a wave radiated forward by the load, 

which explains the difference in the sections of integration for the cases i(t)% The next two terms u+(x, 
t) are connected with the initial position of the string. 

The calculation of the force of resistance to the motion of the load, i.e. the quantity R, given by (3). 
which is calculated from the formula 

Rx=‘uN~,)2 w, (x)) + (l&)1 (X,fl (n))] 

is facilitated by the physical meaning of the terms. In the case of a subcritical velocity, it is then necessary 

to take into account that the quantities &4, I& and 34 I& on the line r = l,(x) are discontinuous, and 

x, z * are functions x, t. 
‘After simple but lengthy calculations and estimates we finally obtain 

+p2 4(x) 
2T 1 - c2i; (x) 

_%!$x~J1;;~;))d{+ 

++e-~), x>o 

Here J,(x) is a function of the first order. 
In particular, we find the reactive force of the string at the initial instant (at the instant of “starting”) 

P2 cvo 
Rx(x’O)‘-2T_ 

c -v 0 

A calculation of R,(x) using these equations shows that, for example, when i(t) = I, = const, t 2 to > 0, 

the value of Rx oscillates with a negative mean (when integration is carried out over a fairly large 

interval) and the frequency, characteristic for this elastic system (for t b r,,), also approaches zero as 
x++=. 
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When the velocity i(t) > c, the value of the jump [u,] I,=h(r) is given by the quantity 

which corresponds to a perturbation which follows after the load; then the following relations hold 

~(Z(t).r) = -p . c2 Q(f),f)=O 
T 12(f)-2 ax (9) 

The value of the jump in the derivative, given by (9), obviously satisfies condition (2). In this case 

&(x)=-p2 c2 foPe-P f =l (x) 
2T i2(f)-cf-2T ’ ’ 

Note that problems of passing through the critical velocity in the case of uniformly accelerated motion 

were investigated previously in [5]. The method of obtaining the asymptotic form of the solutions, an 
analysis of these and a number of important applications were considered in [6]. 

I wish to thank A. I. Vesnitskii for discussing this paper. 
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